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Abstract 20 

Background 21 

The severity of coronavirus disease 2019 (COVID-19) caused by the severe acute 22 

respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly heterogenous. Studies have 23 

reported that males and some ethnic groups are at increased risk of death from COVID-24 

19, which implies that individual risk of death might be influenced by host genetic 25 

factors. 26 

Methods 27 

In this project, we consider the mortality as the trait of interest and perform a genome-28 

wide association study (GWAS) of data for 1,778 infected cases (445 deaths, 25.03%) 29 

distributed by the UK Biobank. Traditional GWAS failed to identify any genome-wide 30 

significant genetic variants from this dataset. To enhance the power of GWAS and 31 

account for possible multi-loci interactions, we adopt the concept of super-variant for the 32 

detection of genetic factors. A discovery-validation procedure is used for verifying the 33 

potential associations.  34 

Results 35 

We find 8 super-variants that are consistently identified across multiple replications as 36 

susceptibility loci for COVID-19 mortality. The identified risk factors on Chromosomes 37 

2, 6, 7, 8, 10, 16, and 17 contain genetic variants and genes related to cilia dysfunctions 38 

(DNAH7 and CLUAP1), cardiovascular diseases (DES and SPEG), thromboembolic 39 

disease (STXBP5), mitochondrial dysfunctions (TOMM7), and innate immune system 40 
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(WSB1). It is noteworthy that DNAH7 has been reported recently as the most 41 

downregulated gene after infecting human bronchial epithelial cells with SARS-CoV2.  42 

Conclusions 43 

Eight genetic variants are identified to significantly increase risk of COVID-19 mortality 44 

among the patients with white British ancestry. These findings may provide timely 45 

evidence and clues for better understanding the molecular pathogenesis of COVID-19 46 

and genetic basis of heterogeneous susceptibility, with potential impact on new 47 

therapeutic options. 48 
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Introduction 60 

Coronavirus disease 2019 (COVID-19) is a highly infectious disease caused by the severe 61 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The pneumonia was first 62 

reported in December 2019 in Wuhan, Hubei Province, China, followed by an outbreak 63 

across the country [1, 2]. As of September 8th, 2020, the pandemic of COVID-19 has 64 

rapidly spread worldwide and caused over 27 million infected cases and 891,000 deaths 65 

(3.3%) according to JHU COVID-19 dashboard [3]. Currently, the effective therapeutic 66 

measures available to counteract the SARS-CoV-2 are limited. While studies have been 67 

dedicated to investigating the clinical features, epidemiological characteristics of 68 

COVID-19 [4-11], and genomic characterization of SARS-CoV-2 [12], few are through 69 

the lens of statistical genetics and the host genetic factors contributing to COVID-19 70 

remain largely enigmatic [13, 14]. Moreover, the severity of COVID-19 and course of the 71 

infection is highly heterogenous. The majority of COVID-19 cases only have mild or no 72 

symptoms, while some of the patients develop serious health outcomes. A UK cross-73 

sectional survey of 20,133 patients who were hospitalized with COVID-19 showed that 74 

patients with diabetes, cardiovascular diseases, hypertension, or chronic respiratory 75 

diseases were at higher risk of death [15]. More importantly, evidence has shown that 76 

males and some ethnic groups have increased risk of death from COVID-19 [16-20]. 77 

These observations suggest that there might be host genetic determinants which 78 

predispose the subgroup of patients to more severe COVID-19 outcomes. Undoubtedly, 79 

there is an urgent need for understanding host genetic basis of heterogeneous 80 

susceptibility to COVID-19 and uncovering genetic risk factors. Current studies mainly 81 

focus on investigating associations between host genetic factors and infection or 82 
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respiratory failure [13, 14]. Obviously, infection may only be partially explained by 83 

genetic factors since exposure to the virus could be more important. Here, we consider 84 

the mortality as the trait of interest for our analysis.  85 

As of early August 2020, UK Biobank [21, 22] has released the testing results of 86 

COVID-19 for 12,428 participants, including 1,778 (14.31%) infected cases with 445 87 

deaths related to COVID-19. This dataset accompanied by already available health care 88 

data, genetic data and death data offers a unique resource and timely opportunity for 89 

learning the host genetic determinants of COVID-19 susceptibility, severity, and 90 

mortality.  91 

In this project, we perform a genome-wide association study (GWAS) exploiting the 92 

concept of super-variates in statistical genetics to identify potential risk loci contributing 93 

to the COVID-19 mortality. A super-variant is a combination of alleles in multiple loci in 94 

analogue to a gene. However, in contrast to a gene that refers to a physically connected 95 

region of a chromosome, the loci contributing to a super-variant is not restricted by its 96 

spatial location in the genome [23-25]. The rationale behind our analysis is two-fold: 97 

First, COVID-19 infections require environmental exposure and the genetic contribution 98 

may be limited relative to the environmental exposure, and the mortality may have a 99 

stronger genetic effect. Second, COVID-19 is a complex syndrome, which may reflect 100 

interacting genomic factors, and our analysis with super-variants enables leveraging gene 101 

interactions beyond the additive effects. 102 

 103 

Methods 104 
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Sample processing and genotype quality control 105 

We analyze the COVID-19 data released by UK Biobank (Category ID: 100091) [22] on 106 

August 3rd, 2020, which include in total 1,778 of COVID-19 infected cases. Here, we 107 

consider an infected case as a sample with any positive PCR test result or a death with 108 

virus found. Among infected cases, 445 of them were reported death caused directly or 109 

indirectly by COVID-19 and the remainder of 1333 patients are survivors. In our 110 

analysis, to limit the potential effect of population structure, we focus on samples from 111 

white British ancestry. After standard sample quality controls, there remain 1096 of 112 

COVID-19 infected participants, of which 292 were deaths (26.64%) and 804 were 113 

survivors. Their imputed genotype data (Field ID: 22801-22822) and clinical variables 114 

including gender and age (Field ID: 31, 34) are all accessible from UK Biobank [21]. 115 

Our analysis makes use of imputed single-nucleotide polymorphism (SNP) datasets from 116 

UK Biobank. SNPs with duplicated names and positions are excluded. After standard 117 

genotyping quality control, where variants with low call rate (missing probability ≥ 0.05) 118 

and disrupted Hardy-Weinberg equilibrium (p-value < 1x10-6) are removed, we retain in 119 

total 18,617,478 SNPs. We divide the whole SNP dataset into 2734 non-overlapping 120 

local sets according to the physical position so that each set consists of SNPs within a 121 

segment of physical length 1 Mb. 122 

Statistical analysis 123 

We consider the concept of super-variant for GWAS. A super-variant is a combination of 124 

alleles in multiple loci, but unlike a gene that refers to a physically connected region of 125 

chromosome, the loci contributing to a super-variant can be anywhere in the genome [24, 126 
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25]. The super-variant is suggested to be powerful and stable in association studies as it 127 

aggregates the strength of individual signals. In addition, it accounts for potential 128 

complex interactions between different genes even when they are located remotely. To 129 

identify significant super-variants, a local ranking and aggregation method is adopted. 130 

Chromosomes are divided into local SNP sets. Within each set, random forest technique 131 

is utilized to obtain the so-called depth importance measure of each SNP which leads to a 132 

ranking of SNPs in terms of their importance. Top SNPs within each local set are then 133 

aggregated into a super-variant. In addition, two modes of transmission, dominant and 134 

recessive modes are both considered for the super-variant identification. We refer the 135 

readers to [25] for details. 136 

Our analysis considers the following discovery-validation procedure. The complete 137 

dataset is randomly divided into two sets, one for discovery and the other for verification. 138 

Each set consists of 146 deaths and 402 survivors. We apply the aforementioned ranking 139 

and aggregation method for super-variant identification on the discovery dataset. After 140 

the discovery of the super-variants, we then investigate their associations with the death 141 

outcomes of COVID-19 through logistic regression in the verification and complete 142 

datasets. Age and gender are considered in the regression analyses as confounders to 143 

remove potential bias. We use 1.83x10-5 (i.e., 0.05/2734) as the threshold for super-144 

variant-level association on the discovery dataset since 2,734 SNP sets are considered. A 145 

super-variant is verified if its logistic regression coefficient achieves the level of 0.05 146 

significance on the verification dataset and super-variant-level significance on the 147 

complete dataset.  148 
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To ascertain the stability of the associations, we repeat the above procedure for 10 times, 149 

and retain the verified super-variants and their contributing SNPs. Finally, for super-150 

variants that are consistently verified across multiple runs, we conduct Cox regressions 151 

with adjustment for age and gender in the complete dataset to further validate their 152 

associations. 153 

 154 

Results 155 

We find 216 different verified super-variants across 10 repetitions of the discovery-156 

validation procedure. More importantly, there are two super-variants, chr6_148 and 157 

chr7_23, identified in 4 out of 10 repetitions. In addition, there are 6 super-variants, 158 

chr2_197, chr2_221, chr8_99, chr10_57, chr16_4 and chr17_26 identified in 3 out of 10 159 

repetitions. According to the binomial distribution, the probability of a super-variant 160 

being verified in 4 (3) out of 10 repetitions by chance is at most 0.00096 (0.0105) if p-161 

value in the verification dataset is assumed to be uniformly distributed. 162 

In terms of the SNPs contributing to these 8 super-variants, there exist SNPs selected 163 

multiple times across different repetitions. Specifically, for chr6_148, SNP rs117928001 164 

is a contributing SNP in all 4 times when this super-variant is verified, and there are other 165 

94 contributing SNPs selected 3 times. Similarly, for chr7_23, SNP rs1322746 is a 166 

contributing SNP in 3 repetitions when this super-variant is verified, and other 4 SNPs 167 

are selected 2 times. For super-variant chr2_197 which is identified in 3 out of 10 168 

repetitions, SNPs rs34011564 and rs71040457 are both contributing SNPs in all 3 times. 169 

For chr8_99, SNPs rs4735444 and rs531453964 are contributing SNPs of verified super-170 
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variants in all 3 repetitions. SNPs rs117217714, rs2176724, rs9804218 and rs2301762 are 171 

contributing SNPs for chr17_26, chr2_197, chr10_57 and chr16_4 in all 3 repetitions 172 

when these super-variants are verified, respectively. We calculate minor allele frequency 173 

(MAF), odds ratio (OR), and p-value for the contributing SNPs of the 8 super-variants 174 

based on the complete dataset. See Table S1 in Additional file 1 for the details of all 175 

contributing SNPs which are selected in at least 2 repetitions.  176 

We use SNPs which are selected in at least 2 repetitions to representatively form 8 super-177 

variants according to the same mode of transmission (dominant/recessive) when they are 178 

discovered. Table 1 gives their effects estimated from univariate logistic regression and 179 

Cox regression with adjustment for sex and age in the complete dataset. For the logistic 180 

regression, all of them achieve super-variant-level significance (i.e., p-value < 1.83x10-5). 181 

The strongest signal in terms of p-value is given by chr7_23 (p-value = 9.5x10-9), and the 182 

largest odds ratio appears at chr17_26 (OR = 4.237). For the Cox regression, the largest 183 

individual hazards ratio (HR) appears at chr17_26 (HR = 2.956) as well, and the smallest 184 

individual p-value is given by chr2_221 (p-value = 5.2x10-9). Table 2 lists the details of 185 

representative contributing SNPs with high selection frequency and important gene 186 

mapping results of the 8 super-variants. Figure 1 shows that the survival probabilities of 187 

the patients with identified super-variants remarkably drop during the first 20 days since 188 

testing, suggesting of risk genotypes. Figure 2 presents the survival probabilities stratified 189 

by the number of super-variants. The HR of super-variants is 1.778 with 95% CI being 190 

[1.593, 1.985], and the associated p-value is 1.1x10-24, while the p-values of sex and age 191 

are 1.2x10-2 (HR = 1.489, male) and 2.9x10-18 (HR = 1.107), respectively. The survival 192 
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probability of patients with more than 3 super-variants dramatically decreases to around 193 

0.6 during the first three weeks. 194 

In addition, we use a chi-square test for independence to investigate whether there are 195 

any gender differences among distribution of these 8 super-variants as well as differences 196 

among distribution of contributing SNPs. For super-variants, chr2_197 has p-value 197 

0.0579 when all samples are considered. The frequency of presenting this super-variant 198 

among males and females is 18.09% and 22.93%, respectively. For contributing SNPs, 199 

rs4346407 on chromosome 2 has p-vale 0.050 when all samples are considered, and SNP 200 

10:56525802_CT_C has p-value 0.0078 when only death cases are considered. The 201 

distributions of these two SNPs are given in Table 3.  202 

 203 

Discussion 204 

As the COVID-19 pandemic creates a global crisis of overwhelming morbidity and 205 

mortality, it is urgent and imperative to provide insights into how host genetic factors link 206 

to clinical outcomes. With the timely release of UK Biobank COVID-19 dataset, we 207 

perform a GWAS study for detecting genetic risk factors for COVID-19 mortality. 208 

However, due to the limited sample size, the traditional single SNP GWAS has low 209 

power in signal detection which is evidenced by the Manhattan plot shown in Figure 3. 210 

This traditional association analysis is also conducted on the same samples with white 211 

British ancestry and controlled for gender and age. As demonstrated, the traditional single 212 

SNP analysis method is unable to detect any genome-wide significant association with 213 
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commonly used threshold 5x10-8, which motivates us to consider the concept of super-214 

variant for GWAS study.  215 

Although the identified super-variants are similarly distributed in males and females, the 216 

results presented in Table 3 suggest that males tend to present more minor alleles for two 217 

contributing SNPs rs4346407 and 10:56525802_CT_C which potentially increase their 218 

risk of COVID-19 mortality. Such a phenomenon of higher risk for males has been 219 

reported in recent studies [17, 18, 26, 27].  220 

The identified super-variants are mapped to annotated genes. The most interesting signal 221 

appears on chromosome 2 in the super-variant chr2_197. Within this super-variant, SNPs 222 

rs200008298, rs183712207, and rs191631470 are located in gene DNAH7. This gene 223 

encodes dynein axonemal heavy chain 7, which is a component of the inner dynein arm 224 

of ciliary axonemes. Gene Ontology (GO) annotations related to this gene include cilia 225 

movement and microtubule motor activity. A recently published paper showed that gene 226 

DNAH7 is the most downregulated gene after infecting human bronchial epithelial cells 227 

with SARS-CoV2 [28]. The authors of that study speculated that the down-regulation of 228 

gene DNAH7 causes the reduction of function of respiratory cilia. Our results suggest that 229 

COVID-19 patients with variations in gene DNAH7 have higher risk for dying from 230 

COVID-19. We hypothesize that the disruption of DNAH7 gene function may result in 231 

ciliary dysmotility and weakened mucociliary clearance capability, which leads to severe 232 

respiratory failure, a likely cause of COVID-19 death [29]. In addition, within the super-233 

variant chr2_197, SNPs rs4578880 and rs113892140 are located in gene SLC39A10, 234 

which encodes a zinc transporter. This gene plays an important role in mediating immune 235 

cell homeostasis. It has been reported to facilitate antiapoptotic signaling during early B-236 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.05.20226761doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.05.20226761
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

cell development [30], modulate B-cell receptor signal strength [31], and control 237 

macrophage survival [32].  238 

Signal at super-variant chr16_4 is also related to cilia. This super-variant consists of a 239 

single SNP rs2301762, which is located in gene CLUAP1. This gene encodes clusterin-240 

associated protein 1. It is an evolutionarily conserved protein required for ciliogenesis 241 

[33], and its GO annotations include intraciliary transport involved in cilium assembly. 242 

Our findings evidence the importance of respiratory cilia functioning properly in 243 

COVID-19 patients, which may be an important site in host-pathogen interaction during 244 

SARS-CoV2 infection of airways [34] as well as a potential therapeutic target [35]. 245 

It is noteworthy that both super-variants chr2_197 and chr16_4 are related to cilia, which 246 

plays a crucial role in SARS-CoV-2 infection. Studies have reported that the angiotensin-247 

converting enzyme II (ACE2) receptors on oral and nasal epithelium cells are the main 248 

portal for SARS-CoV-2 infection and transmission [36, 37]. Viral proliferation in the 249 

airway disrupts the structure and function of ciliated epithelium, causes ciliary dyskinesia 250 

and leads to lower respiratory tract infection [38]. Moreover, it has been reported that 251 

dysfunctions in olfactory cilia lead to loss of smell (anosmia), a COVID-19 associated 252 

symptom, and coronavirus hijacks the ciliated cells and causes deciliation in the human 253 

nasal epithelium [39].  254 

Chr2_221 consists of 3 SNPs. SNP rs71040457 is located in the downstream of gene 255 

DES (distance = 3322 bp) and the upstream of gene SPEG (distance = 4917 bp). Gene 256 

DES encodes a muscle-specific class III intermediate filament. Its GO annotations 257 

include protein binding, structural constituent of cytoskeleton, and regulation of heart 258 

contraction. Gene SPEG encodes striated muscle enriched protein kinase, whose 259 
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functions are related to protein kinase activity and muscle cell differentiation. Mutations 260 

in both gene DES and SPEG are reported to be associated with cardiomyopathy [40-42].  261 

Several studies have reported cardiomyopathy in COVID-19 patients [43, 44], and acute 262 

myocardial damage caused by SARS-CoV-2 greatly increases the difficulty and 263 

complexity of patient treatment [45]. 264 

Chr7_23 is composed by five intergenic variant SNPs. Among them, SNP rs55986907 is 265 

an expression quantitative trait loci (eQTL) of gene TOMM7 in multiple tissues, 266 

including whole blood, lung, adipose, thyroid, skin, nerve, and esophagus based on the 267 

Genotype-Tissue Expression (GTEx) database. The gene product of TOMM7 is a subunit 268 

of the translocase of the outer mitochondrial membrane, and plays a role in regulating the 269 

assembly and stability of the translocase complex [46]. A study discussed that intra and 270 

extracellular mitochondrial function can be impacted by SARS-CoV-2, which may be 271 

related to the hyper-inflammatory state termed as the “cytokine storm” found in COVID-272 

19 patients, with contributions to the progression and severity of the disease [47]. Super 273 

variant chr6_148 contains 101 SNPs. Eighty-nine of them are located in gene 274 

STXBP5and six of them are located in gene STXBP5-AS1. On the one hand, gene 275 

STXBP5 encodes a syntaxin 1 binding protein. Its GO annotations include 276 

neurotransmitter release and regulation of synaptic vesicle exocytosis. Genome-wide 277 

association studies have found the association between STXBP5 and Von Willebrand 278 

factor (VWF) plasma level in humans [48, 49], which is a predictor for the risk of 279 

myocardial infarction and thrombosis. A study showed that gene STXBP5 inhibits 280 

endothelial exocytosis and promotes platelet secretion, and the variation 281 

within STXBP5 is a genetic risk for venous thromboembolic disease [50]. COVID-19 282 
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leads to excessive inflammation, platelet activation, endothelial dysfunction, and stasis, 283 

which may predispose patients to venous and arterial thrombotic disease [51]. On the 284 

other hand, studies have revealed that STXBP5-AS1 encodes a long noncoding RNA, 285 

which inhibits cell proliferation, migration, and invasion via preventing the 286 

phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway against 287 

STXBP5 expression in non-small-cell lung carcinoma and gastric cancer cells [52, 53]. 288 

Our results suggest that the variations within STXBP5/STXBP5-AS1 and the interaction 289 

between them may result in increased risk of death among COVID-19 patients through 290 

the mechanism related to endothelial exocytosis. 291 

Chr17_26 is composed by three intergenic variant SNPs. Among them, SNP rs60811869 292 

is an eQTL of gene WSB1 in Artery-Tibial tissue based on the GTEx database. Gene 293 

WSB1 encodes a member of the WD-protein subfamily, which is highly expressed in 294 

spleen and lung [54]. Its related pathways include innate immune system and Class I 295 

MHC mediated antigen processing and presentation. This gene has been reported to 296 

function as a Lnterleukin-21(IL-21) receptor binding molecule, which enhances the 297 

maturation of IL-21 receptor [55]. Variations in this gene may result in disrupted 298 

functions of immune system and lead to higher death rate among COVID-19 patients.  299 

Super-variant chr10_57 contains 11 SNPs and all of them are located in gene PCDH15. 300 

This gene is a member of the cadherin superfamily, which encodes a Calcium-dependent 301 

cell-adhesion protein. Gene PCDH15 is essential for maintenance of normal retinal and 302 

cochlear function. 303 
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Super-variant chr8_99 is composed by 7 SNPs. All the SNPs are located in gene CPQ, 304 

which encodes carboxypeptidase Q. GO annotations of this gene include protein 305 

homodimerization activity and carboxypeptidase activity.  306 

Although the roles of genes PCDH15 and CPQ in viral infection remain largely unclear, 307 

our results warrant future investigation to learn the relationship between genetic 308 

variations and the severe COVID-19 outcomes. 309 

Our study is restricted by the limited sample size. We anticipate a continuous 310 

accumulation of data in the following months and plan to iterate our analysis whenever 311 

more data become available. Furthermore, we currently focus on the population with 312 

white British ancestry of UK Biobank in the analysis, validating the identified risk factors 313 

in independent populations from other resources or ethnic groups worth further 314 

investigation. 315 

 316 

Conclusions 317 

We identify 8 potential genetic risk loci for the mortality of COVID-19. These findings 318 

may provide timely evidence and clues for better understanding the molecular 319 

pathogenesis of COVID-19 and genetic basis of heterogeneous susceptibility, with 320 

potential impact on new therapeutic options. 321 

  322 
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Figures and Tables 489 

Figure 1: Survival curves of 8 identified super-variants in the complete dataset. The x-490 

axis represents days since testing, and the y-axis represents the survival probability. 491 

 492 

Figure 2: Survival curves stratified by the number of super-variants in the complete 493 

dataset. The x-axis represents days since testing, and the y-axis represents the survival 494 

probability. 495 

 496 

Figure 3: Manhattan plot of traditional single SNP association analysis based on samples 497 

with white British ancestry only and controlled for gender and age. The red horizontal 498 

line corresponds to the commonly adopted genome-wide significant level at 5x10-8, and 499 

the blue horizontal line gives to the suggestive significant level at 1x10-5. Top SNPs 500 

above the suggestive line in each chromosome are annotated. 501 

 502 

Table 1: Marginal effects of 8 super-variants in the complete dataset. 503 

 504 

Table 2: SNPs with high selection frequency and important gene mapping results in 8 505 

super-variants. 506 

 507 

Table 3: Allelic distribution of contributing SNPs. 508 
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 509 

 510 

 511 

Table 2| SNPs with high selection frequency and important gene mapping results in 8 super-
variants. 

Super-variant Chr SNP name position 
Minor 
allele 

Major 
allele MAF OR p-value 

chr2_197 2 rs73060484 196364477 C A 0.069 1.945 6.0x10-4 

    rs77578623 196369073 T C 0.070 1.939 6.2x10-4 

    rs74417002 196384505 G A 0.034 1.832 3.0x10-2 

    rs73070529 196412097 A C 0.048 2.249 3.6x10-4 

    rs113892140 196439005 A G 0.044 2.031 2.8x10-3 

    rs200008298 196602155 AATACT A 0.032 1.8 3.1x10-2 

    rs183712207 196611282 A G 0.007 4.783 7.7x10-3 

    rs191631470 196859045 T C 0.007 3.335 3.9x10-2 

    rs2176724 196952410 A G 0.138 1.484 6.1x10-3 

chr2_221 2 rs71040457 220294782 A AG 0.355 1.331 7.7x10-3 

chr6_148 6 rs117928001 147514999 T C 0.049 2.749 1.1x10-5 

    rs116898161 147538692 G A 0.046 2.541 6.9x10-5 

chr7_23 7 rs13227460 22588381 T C 0.278 1.3 2.6x10-2 

    rs55986907 22817292 T C 0.286 1.601 3.5x10-5 

chr8_99 8 rs7817272 98140470 C T 0.194 1.736 1.7x10-5 

    rs4735444 98140991 T C 0.201 1.784 5.8x10-6 

Table 1| Marginal effects of 8 super-variants in the complete dataset. 

Dominant Gene OR 95% CI of OR p value HR 95% CI of HR p value 

chr6_148 
STXBP5/ST
XBP5-AS1 

2.909 [1.938, 4.365] 1.4x10-7 2.048 [1.435, 2.921] 7.7x10-5 

chr8_99 CPQ 1.923 [1.419, 2.605] 1.6x10-5 1.502 [1.119, 2.015] 6.7x10-3 

chr16_4 CLUAP1 2.725 [1.744, 4.259] 7.0x10-6 2.123 [1.433, 3.143] 1.7x10-4 

chr17_26 WSB1 4.237 [2.472, 7.263] 8.4x10-8 2.956 [1.949, 4.482] 3.4x10-7 

Recessive Gene OR 95% CI of OR p value HR 95% CI of HR p value 

ch2_197 
DNAH7/SL

C39A10 
2.553 [1.801, 3.616] 7.3x10-8 1.625 [1.170, 2.257] 3.8x10-3 

chr2_221 DES/SPEG 2.739 [1.893, 3.963] 4.9x10-8 2.614 [1.894, 3.609] 5.2x10-9 

chr7_23 TOMM7 2.411 [1.774, 3.276] 9.5x10-9 1.943 [1.451, 2.603] 8.1x10-6 

chr10_57 PCDH15 2.521 [1.736, 3.662] 7.1x10-7 1.813 [1.283, 2.561] 7.4x10-4 
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    rs1431889 98141643 C G 0.193 1.704 3.5x10-5 

    rs2874140 98142930 T A 0.194 1.694 4.0x10-5 

    rs531453964 98143128 CA C 0.185 1.849 3.2x10-6 

    rs7007951 98146644 T C 0.184 1.711 4.4x10-5 

    rs920576 98147539 C T 0.201 1.615 1.6x10-4 

chr10_57 10 rs9804218 56495374 G C 0.357 1.373 3.3x10-3 

chr16_4 16 rs2301762 3550977 G C 0.055 2.541 2.0x10-5 

chr17_26 17 rs60811869 25590833 C T 0.024 2.966 6.5x10-4 

    rs117217714 25987181 C T 0.013 6.255 3.3x10-5 

 512 

 513 

Table 3| Allelic distribution of contributing SNPs. 

rs4346407 0 1 2 

Female 218 227 45 

Male 236 255 80 

10:56525802_CT_C 0 1 2 

Female 76 21 9 

Male 101 68 13 

 514 
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  516 

                           517 

Figure 1: Survival curves of 8 identified super-variants in the complete dataset. The x-518 

axis represents days since testing, and the y-axis represents the survival probability. 519 
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 520 

Figure 2: Survival curves stratified by the number of super-variants in the complete 521 

dataset. The x-axis represents days since testing, and the y-axis represents the survival 522 

probability. 523 
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 525 

Figure 3: Manhattan plot of traditional single SNP association analysis based on samples 526 

with white British ancestry only and controlled for gender and age. The red horizontal 527 

line corresponds to the commonly adopted genome-wide significant level at 5x10-8, and 528 

the blue horizontal line gives to the suggestive significant level at 1x10-5. Top SNPs 529 

above the suggestive line in each chromosome are annotated. 530 
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