1 Genetic variants are identified to increase risk of COVID-19 related mortality from

2 UK Biobank data

- 3 Jianchang Hu¹, Cai Li¹, Shiying Wang, Ting Li, Heping Zhang*
- 4 Department of Biostatistics, Yale University
- 5 ¹Co-first Author
- 6 *Correspondence Author
- 7 Email: heping.zhang@yale.edu
- 8 300 George Street, Ste 523, New Haven, CT, 06511
- 9
- 10
- .0
- 11
- 12
- 13
- 14
- 15
- . .
- 16
 - 17
 - 18
 - 19

20 Abstract

21 Background

- 22 The severity of coronavirus disease 2019 (COVID-19) caused by the severe acute
- 23 respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly heterogenous. Studies have
- reported that males and some ethnic groups are at increased risk of death from COVID-
- 25 19, which implies that individual risk of death might be influenced by host genetic
- 26 factors.

27 *Methods*

In this project, we consider the mortality as the trait of interest and perform a genomewide association study (GWAS) of data for 1,778 infected cases (445 deaths, 25.03%) distributed by the UK Biobank. Traditional GWAS failed to identify any genome-wide significant genetic variants from this dataset. To enhance the power of GWAS and account for possible multi-loci interactions, we adopt the concept of super-variant for the detection of genetic factors. A discovery-validation procedure is used for verifying the potential associations.

35 **Results**

We find 8 super-variants that are consistently identified across multiple replications as
susceptibility loci for COVID-19 mortality. The identified risk factors on Chromosomes
2, 6, 7, 8, 10, 16, and 17 contain genetic variants and genes related to cilia dysfunctions
(*DNAH7* and *CLUAP1*), cardiovascular diseases (*DES* and *SPEG*), thromboembolic
disease (*STXBP5*), mitochondrial dysfunctions (*TOMM7*), and innate immune system

41	(WSB1). It is noteworthy that DNAH7 has been reported recently as the most
42	downregulated gene after infecting human bronchial epithelial cells with SARS-CoV2.
43	Conclusions
44	Eight genetic variants are identified to significantly increase risk of COVID-19 mortality
45	among the patients with white British ancestry. These findings may provide timely
46	evidence and clues for better understanding the molecular pathogenesis of COVID-19
47	and genetic basis of heterogeneous susceptibility, with potential impact on new
48	therapeutic options.
49	Keywords
50	COVID-19, GWAS, Host genetic factors, Mortality, SARS-CoV2, UK Biobank
51	
52	
53	
54	
55	
56	
57	
58	
59	

60 Introduction

61	Coronavirus disease 2019 (COVID-19) is a highly infectious disease caused by the severe			
62	acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The pneumonia was first			
63	reported in December 2019 in Wuhan, Hubei Province, China, followed by an outbreak			
64	across the country [1, 2]. As of September 8th, 2020, the pandemic of COVID-19 has			
65	rapidly spread worldwide and caused over 27 million infected cases and 891,000 deaths			
66	(3.3%) according to JHU COVID-19 dashboard [3]. Currently, the effective therapeutic			
67	measures available to counteract the SARS-CoV-2 are limited. While studies have been			
68	dedicated to investigating the clinical features, epidemiological characteristics of			
69	COVID-19 [4-11], and genomic characterization of SARS-CoV-2 [12], few are through			
70	the lens of statistical genetics and the host genetic factors contributing to COVID-19			
71	remain largely enigmatic [13, 14]. Moreover, the severity of COVID-19 and course of the			
72	infection is highly heterogenous. The majority of COVID-19 cases only have mild or no			
73	symptoms, while some of the patients develop serious health outcomes. A UK cross-			
74	sectional survey of 20,133 patients who were hospitalized with COVID-19 showed that			
75	patients with diabetes, cardiovascular diseases, hypertension, or chronic respiratory			
76	diseases were at higher risk of death [15]. More importantly, evidence has shown that			
77	males and some ethnic groups have increased risk of death from COVID-19 [16-20].			
78	These observations suggest that there might be host genetic determinants which			
79	predispose the subgroup of patients to more severe COVID-19 outcomes. Undoubtedly,			
80	there is an urgent need for understanding host genetic basis of heterogeneous			
81	susceptibility to COVID-19 and uncovering genetic risk factors. Current studies mainly			
82	focus on investigating associations between host genetic factors and infection or			

83	respiratory failure [13, 14]. Obviously, infection may only be partially explained by
84	genetic factors since exposure to the virus could be more important. Here, we consider
85	the mortality as the trait of interest for our analysis.
86	As of early August 2020, UK Biobank [21, 22] has released the testing results of
87	COVID-19 for 12,428 participants, including 1,778 (14.31%) infected cases with 445
88	deaths related to COVID-19. This dataset accompanied by already available health care
89	data, genetic data and death data offers a unique resource and timely opportunity for
90	learning the host genetic determinants of COVID-19 susceptibility, severity, and
91	mortality.
92	In this project, we perform a genome-wide association study (GWAS) exploiting the
93	concept of super-variates in statistical genetics to identify potential risk loci contributing
94	to the COVID-19 mortality. A super-variant is a combination of alleles in multiple loci in
95	analogue to a gene. However, in contrast to a gene that refers to a physically connected
96	region of a chromosome, the loci contributing to a super-variant is not restricted by its
97	spatial location in the genome [23-25]. The rationale behind our analysis is two-fold:
98	First, COVID-19 infections require environmental exposure and the genetic contribution
99	may be limited relative to the environmental exposure, and the mortality may have a
100	stronger genetic effect. Second, COVID-19 is a complex syndrome, which may reflect
101	interacting genomic factors, and our analysis with super-variants enables leveraging gene
102	interactions beyond the additive effects.
103	

104 Methods

105 Sample processing and genotype quality control

106	We analyze the COVID-19 data released by UK Biobank (Category ID: 100091) [22] on
107	August 3rd, 2020, which include in total 1,778 of COVID-19 infected cases. Here, we
108	consider an infected case as a sample with any positive PCR test result or a death with
109	virus found. Among infected cases, 445 of them were reported death caused directly or
110	indirectly by COVID-19 and the remainder of 1333 patients are survivors. In our
111	analysis, to limit the potential effect of population structure, we focus on samples from
112	white British ancestry. After standard sample quality controls, there remain 1096 of
113	COVID-19 infected participants, of which 292 were deaths (26.64%) and 804 were
114	survivors. Their imputed genotype data (Field ID: 22801-22822) and clinical variables
115	including gender and age (Field ID: 31, 34) are all accessible from UK Biobank [21].
116	Our analysis makes use of imputed single-nucleotide polymorphism (SNP) datasets from
117	UK Biobank. SNPs with duplicated names and positions are excluded. After standard
118	genotyping quality control, where variants with low call rate (missing probability ≥ 0.05)
119	and disrupted Hardy-Weinberg equilibrium (p-value $< 1x10^{-6}$) are removed, we retain in
120	total 18,617,478 SNPs. We divide the whole SNP dataset into 2734 non-overlapping
121	local sets according to the physical position so that each set consists of SNPs within a
122	segment of physical length 1 Mb.

123 Statistical analysis

We consider the concept of super-variant for GWAS. A super-variant is a combination of alleles in multiple loci, but unlike a gene that refers to a physically connected region of chromosome, the loci contributing to a super-variant can be anywhere in the genome [24,

127	25]. The super-variant is suggested to be powerful and stable in association studies as it
128	aggregates the strength of individual signals. In addition, it accounts for potential
129	complex interactions between different genes even when they are located remotely. To
130	identify significant super-variants, a local ranking and aggregation method is adopted.
131	Chromosomes are divided into local SNP sets. Within each set, random forest technique
132	is utilized to obtain the so-called depth importance measure of each SNP which leads to a
133	ranking of SNPs in terms of their importance. Top SNPs within each local set are then
134	aggregated into a super-variant. In addition, two modes of transmission, dominant and
135	recessive modes are both considered for the super-variant identification. We refer the
136	readers to [25] for details.
137	Our analysis considers the following discovery-validation procedure. The complete
120	
138	dataset is randomly divided into two sets, one for discovery and the other for verification.
138	Each set consists of 146 deaths and 402 survivors. We apply the aforementioned ranking
138 139 140	Each set consists of 146 deaths and 402 survivors. We apply the aforementioned ranking and aggregation method for super-variant identification on the discovery dataset. After
138 139 140 141	the discovery of the super-variants, we then investigate their associations with the death
138 139 140 141 142	dataset is randomly divided into two sets, one for discovery and the other for verification. Each set consists of 146 deaths and 402 survivors. We apply the aforementioned ranking and aggregation method for super-variant identification on the discovery dataset. After the discovery of the super-variants, we then investigate their associations with the death outcomes of COVID-19 through logistic regression in the verification and complete
138 139 140 141 142 143	dataset is randomly divided into two sets, one for discovery and the other for verification. Each set consists of 146 deaths and 402 survivors. We apply the aforementioned ranking and aggregation method for super-variant identification on the discovery dataset. After the discovery of the super-variants, we then investigate their associations with the death outcomes of COVID-19 through logistic regression in the verification and complete datasets. Age and gender are considered in the regression analyses as confounders to
138 139 140 141 142 143 144	dataset is randomly divided into two sets, one for discovery and the other for verification. Each set consists of 146 deaths and 402 survivors. We apply the aforementioned ranking and aggregation method for super-variant identification on the discovery dataset. After the discovery of the super-variants, we then investigate their associations with the death outcomes of COVID-19 through logistic regression in the verification and complete datasets. Age and gender are considered in the regression analyses as confounders to remove potential bias. We use 1.83×10^{-5} (i.e., $0.05/2734$) as the threshold for super-
138 139 140 141 142 143 144 145	dataset is randomly divided into two sets, one for discovery and the other for verification. Each set consists of 146 deaths and 402 survivors. We apply the aforementioned ranking and aggregation method for super-variant identification on the discovery dataset. After the discovery of the super-variants, we then investigate their associations with the death outcomes of COVID-19 through logistic regression in the verification and complete datasets. Age and gender are considered in the regression analyses as confounders to remove potential bias. We use 1.83×10^{-5} (i.e., $0.05/2734$) as the threshold for super- variant-level association on the discovery dataset since 2,734 SNP sets are considered. A

147 significance on the verification dataset and super-variant-level significance on the

148 complete dataset.

To ascertain the stability of the associations, we repeat the above procedure for 10 times,
and retain the verified super-variants and their contributing SNPs. Finally, for supervariants that are consistently verified across multiple runs, we conduct Cox regressions
with adjustment for age and gender in the complete dataset to further validate their
associations.

154

155 **Results**

- 156 We find 216 different verified super-variants across 10 repetitions of the discovery-
- validation procedure. More importantly, there are two super-variants, chr6_148 and
- 158 chr7_23, identified in 4 out of 10 repetitions. In addition, there are 6 super-variants,
- 159 chr2_197, chr2_221, chr8_99, chr10_57, chr16_4 and chr17_26 identified in 3 out of 10
- 160 repetitions. According to the binomial distribution, the probability of a super-variant
- being verified in 4 (3) out of 10 repetitions by chance is at most 0.00096 (0.0105) if p-
- value in the verification dataset is assumed to be uniformly distributed.
- 163 In terms of the SNPs contributing to these 8 super-variants, there exist SNPs selected
- 164 multiple times across different repetitions. Specifically, for chr6_148, SNP rs117928001
- is a contributing SNP in all 4 times when this super-variant is verified, and there are other
- 166 94 contributing SNPs selected 3 times. Similarly, for chr7_23, SNP rs1322746 is a
- 167 contributing SNP in 3 repetitions when this super-variant is verified, and other 4 SNPs
- are selected 2 times. For super-variant chr2_197 which is identified in 3 out of 10
- repetitions, SNPs rs34011564 and rs71040457 are both contributing SNPs in all 3 times.
- 170 For chr8_99, SNPs rs4735444 and rs531453964 are contributing SNPs of verified super-

variants in all 3 repetitions. SNPs rs117217714, rs2176724, rs9804218 and rs2301762 are
contributing SNPs for chr17_26, chr2_197, chr10_57 and chr16_4 in all 3 repetitions
when these super-variants are verified, respectively. We calculate minor allele frequency
(MAF), odds ratio (OR), and p-value for the contributing SNPs of the 8 super-variants
based on the complete dataset. See Table S1 in Additional file 1 for the details of all
contributing SNPs which are selected in at least 2 repetitions.

177 We use SNPs which are selected in at least 2 repetitions to representatively form 8 super-178 variants according to the same mode of transmission (dominant/recessive) when they are 179 discovered. Table 1 gives their effects estimated from univariate logistic regression and 180 Cox regression with adjustment for sex and age in the complete dataset. For the logistic regression, all of them achieve super-variant-level significance (i.e., p-value $< 1.83 \times 10^{-5}$). 181 The strongest signal in terms of p-value is given by $chr7_23$ (p-value = 9.5×10^{-9}), and the 182 largest odds ratio appears at chr17 26 (OR = 4.237). For the Cox regression, the largest 183 184 individual hazards ratio (HR) appears at chr17 26 (HR = 2.956) as well, and the smallest individual p-value is given by chr2 221 (p-value = 5.2×10^{-9}). Table 2 lists the details of 185 representative contributing SNPs with high selection frequency and important gene 186 187 mapping results of the 8 super-variants. Figure 1 shows that the survival probabilities of the patients with identified super-variants remarkably drop during the first 20 days since 188 testing, suggesting of risk genotypes. Figure 2 presents the survival probabilities stratified 189 by the number of super-variants. The HR of super-variants is 1.778 with 95% CI being 190 [1.593, 1.985], and the associated p-value is 1.1×10^{-24} , while the p-values of sex and age 191 are 1.2×10^{-2} (HR = 1.489, male) and 2.9×10^{-18} (HR = 1.107), respectively. The survival 192

probability of patients with more than 3 super-variants dramatically decreases to around0.6 during the first three weeks.

195	In addition, we use a chi-square test for independence to investigate whether there are
196	any gender differences among distribution of these 8 super-variants as well as differences
197	among distribution of contributing SNPs. For super-variants, chr2_197 has p-value
198	0.0579 when all samples are considered. The frequency of presenting this super-variant
199	among males and females is 18.09% and 22.93%, respectively. For contributing SNPs,
200	rs4346407 on chromosome 2 has p-vale 0.050 when all samples are considered, and SNP
201	10:56525802_CT_C has p-value 0.0078 when only death cases are considered. The
202	distributions of these two SNPs are given in Table 3.

203

204 **Discussion**

205 As the COVID-19 pandemic creates a global crisis of overwhelming morbidity and 206 mortality, it is urgent and imperative to provide insights into how host genetic factors link to clinical outcomes. With the timely release of UK Biobank COVID-19 dataset, we 207 208 perform a GWAS study for detecting genetic risk factors for COVID-19 mortality. However, due to the limited sample size, the traditional single SNP GWAS has low 209 power in signal detection which is evidenced by the Manhattan plot shown in Figure 3. 210 211 This traditional association analysis is also conducted on the same samples with white British ancestry and controlled for gender and age. As demonstrated, the traditional single 212 213 SNP analysis method is unable to detect any genome-wide significant association with

commonly used threshold $5x10^{-8}$, which motivates us to consider the concept of super-

215 variant for GWAS study.

216	Although the identified super-variants are similarly distributed in males and females, the
217	results presented in Table 3 suggest that males tend to present more minor alleles for two
218	contributing SNPs rs4346407 and 10:56525802_CT_C which potentially increase their
219	risk of COVID-19 mortality. Such a phenomenon of higher risk for males has been
220	reported in recent studies [17, 18, 26, 27].
221	The identified super-variants are mapped to annotated genes. The most interesting signal
222	appears on chromosome 2 in the super-variant chr2_197. Within this super-variant, SNPs
223	rs200008298, rs183712207, and rs191631470 are located in gene DNAH7. This gene
224	encodes dynein axonemal heavy chain 7, which is a component of the inner dynein arm
225	of ciliary axonemes. Gene Ontology (GO) annotations related to this gene include cilia
226	movement and microtubule motor activity. A recently published paper showed that gene
227	DNAH7 is the most downregulated gene after infecting human bronchial epithelial cells
228	with SARS-CoV2 [28]. The authors of that study speculated that the down-regulation of
229	gene DNAH7 causes the reduction of function of respiratory cilia. Our results suggest that
230	COVID-19 patients with variations in gene DNAH7 have higher risk for dying from
231	COVID-19. We hypothesize that the disruption of DNAH7 gene function may result in
232	ciliary dysmotility and weakened mucociliary clearance capability, which leads to severe
233	respiratory failure, a likely cause of COVID-19 death [29]. In addition, within the super-
234	variant chr2_197, SNPs rs4578880 and rs113892140 are located in gene SLC39A10,
235	which encodes a zinc transporter. This gene plays an important role in mediating immune
236	cell homeostasis. It has been reported to facilitate antiapoptotic signaling during early B-

cell development [30], modulate B-cell receptor signal strength [31], and controlmacrophage survival [32].

239	Signal at super-variant chr16_4 is also related to cilia. This super-variant consists of a				
240	single SNP rs2301762, which is located in gene CLUAP1. This gene encodes clusterin-				
241	associated protein 1. It is an evolutionarily conserved protein required for ciliogenesis				
242	[33], and its GO annotations include intraciliary transport involved in cilium assembly.				
243	Our findings evidence the importance of respiratory cilia functioning properly in				
244	COVID-19 patients, which may be an important site in host-pathogen interaction during				
245	SARS-CoV2 infection of airways [34] as well as a potential therapeutic target [35].				
246	It is noteworthy that both super-variants chr2_197 and chr16_4 are related to cilia, which				
247	plays a crucial role in SARS-CoV-2 infection. Studies have reported that the angiotensin-				
248	converting enzyme II (ACE2) receptors on oral and nasal epithelium cells are the main				
249	portal for SARS-CoV-2 infection and transmission [36, 37]. Viral proliferation in the				
250	airway disrupts the structure and function of ciliated epithelium, causes ciliary dyskinesia				
251	and leads to lower respiratory tract infection [38]. Moreover, it has been reported that				
252	dysfunctions in olfactory cilia lead to loss of smell (anosmia), a COVID-19 associated				
253	symptom, and coronavirus hijacks the ciliated cells and causes deciliation in the human				
254	nasal epithelium [39].				

Chr2_221 consists of 3 SNPs. SNP rs71040457 is located in the downstream of gene *DES* (distance = 3322 bp) and the upstream of gene *SPEG* (distance = 4917 bp). Gene *DES* encodes a muscle-specific class III intermediate filament. Its GO annotations
include protein binding, structural constituent of cytoskeleton, and regulation of heart
contraction. Gene *SPEG* encodes striated muscle enriched protein kinase, whose

260	functions are related to protein kinase activity and muscle cell differentiation. Mutations
261	in both gene <i>DES</i> and <i>SPEG</i> are reported to be associated with cardiomyopathy [40-42].
262	Several studies have reported cardiomyopathy in COVID-19 patients [43, 44], and acute
263	myocardial damage caused by SARS-CoV-2 greatly increases the difficulty and
264	complexity of patient treatment [45].
265	Chr7_23 is composed by five intergenic variant SNPs. Among them, SNP rs55986907 is
266	an expression quantitative trait loci (eQTL) of gene TOMM7 in multiple tissues,
267	including whole blood, lung, adipose, thyroid, skin, nerve, and esophagus based on the
268	Genotype-Tissue Expression (GTEx) database. The gene product of TOMM7 is a subunit
269	of the translocase of the outer mitochondrial membrane, and plays a role in regulating the
270	assembly and stability of the translocase complex [46]. A study discussed that intra and
271	extracellular mitochondrial function can be impacted by SARS-CoV-2, which may be
272	related to the hyper-inflammatory state termed as the "cytokine storm" found in COVID-
273	19 patients, with contributions to the progression and severity of the disease [47]. Super
274	variant chr6_148 contains 101 SNPs. Eighty-nine of them are located in gene
275	STXBP5and six of them are located in gene STXBP5-AS1. On the one hand, gene
276	STXBP5 encodes a syntaxin 1 binding protein. Its GO annotations include
277	neurotransmitter release and regulation of synaptic vesicle exocytosis. Genome-wide
278	association studies have found the association between STXBP5 and Von Willebrand
279	factor (VWF) plasma level in humans [48, 49], which is a predictor for the risk of
280	myocardial infarction and thrombosis. A study showed that gene STXBP5 inhibits
281	endothelial exocytosis and promotes platelet secretion, and the variation
282	within STXBP5 is a genetic risk for venous thromboembolic disease [50]. COVID-19

283	leads to excessive inflammation, platelet activation, endothelial dysfunction, and stasis,
284	which may predispose patients to venous and arterial thrombotic disease [51]. On the
285	other hand, studies have revealed that STXBP5-AS1 encodes a long noncoding RNA,
286	which inhibits cell proliferation, migration, and invasion via preventing the
287	phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway against
288	STXBP5 expression in non-small-cell lung carcinoma and gastric cancer cells [52, 53].
289	Our results suggest that the variations within STXBP5/STXBP5-AS1 and the interaction
290	between them may result in increased risk of death among COVID-19 patients through
291	the mechanism related to endothelial exocytosis.
292	Chr17_26 is composed by three intergenic variant SNPs. Among them, SNP rs60811869
293	is an eQTL of gene WSB1 in Artery-Tibial tissue based on the GTEx database. Gene
294	WSB1 encodes a member of the WD-protein subfamily, which is highly expressed in
295	spleen and lung [54]. Its related pathways include innate immune system and Class I
296	MHC mediated antigen processing and presentation. This gene has been reported to
297	function as a Lnterleukin-21(IL-21) receptor binding molecule, which enhances the
298	maturation of IL-21 receptor [55]. Variations in this gene may result in disrupted
299	functions of immune system and lead to higher death rate among COVID-19 patients.
300	Super-variant chr10_57 contains 11 SNPs and all of them are located in gene PCDH15.
301	This gene is a member of the cadherin superfamily, which encodes a Calcium-dependent
302	cell-adhesion protein. Gene PCDH15 is essential for maintenance of normal retinal and
303	cochlear function.

304	Super-variant chr8	_99 is composed b	by 7 SNPs.	All the SNPs ar	e located in gene	: CPQ,
			2			~ ~ /

- 305 which encodes carboxypeptidase Q. GO annotations of this gene include protein
- 306 homodimerization activity and carboxypeptidase activity.
- 307 Although the roles of genes *PCDH15* and *CPQ* in viral infection remain largely unclear,
- 308 our results warrant future investigation to learn the relationship between genetic
- 309 variations and the severe COVID-19 outcomes.
- 310 Our study is restricted by the limited sample size. We anticipate a continuous
- accumulation of data in the following months and plan to iterate our analysis whenever
- more data become available. Furthermore, we currently focus on the population with
- 313 white British ancestry of UK Biobank in the analysis, validating the identified risk factors
- in independent populations from other resources or ethnic groups worth further
- 315 investigation.
- 316

317 Conclusions

- 318 We identify 8 potential genetic risk loci for the mortality of COVID-19. These findings
- 319 may provide timely evidence and clues for better understanding the molecular
- pathogenesis of COVID-19 and genetic basis of heterogeneous susceptibility, with
- 321 potential impact on new therapeutic options.

323 **Declarations**

324 *Ethics approval and consent to participate*

- 325 Ethical approval and participant consent were collected by UK Biobank at the time
- 326 participants enrolled. This paper is an analysis of anonymized data provided by UK
- 327 Biobank. According to Yale IRB, analysis of anonymized data does not constitute Human
- 328 Subjects Research.

329

330 Consent for publication

- 331 Not applicable.
- 332
- 333 Availability of data and material
- The data used in the study are available with the permission of the UK Biobank
- 335 (https://www.ukbiobank.ac.uk).
- 336

337 *Competing interests*

- 338 The authors declare that they have no competing interests.
- 339
- 340 *Funding*
- Partially funded by U.S. National Institutes of Health R01HG010171 and
- 342 R01MH116527.

344 Authors' contributions

- 345 JH, CL, and HZ designed the study. JH, CL, SW, and TL performed the experiments and
- analyzed the data. All authors made critical input to the manuscript.

347

348 Acknowledgements

- 349 Zhang's research is supported in part by U.S. National Institutes of Health
- 350 (R01HG010171 and R01MH116527). This research has been conducted using the UK
- 351 Biobank Resource under Application Number 42009. We thank the Yale Center for
- 352 Research Computing for guidance and use of the research computing infrastructure.

Zhu, N., et al., A novel coronavirus from patients with pneumonia in China, 2019. New

354 **Reference**

1.

355

356 England Journal of Medicine, 2020. 357 2. Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in 358 Wuhan, China. The Lancet, 2020. 395(10223): p. 497-506. 359 3. Dong, E., H. Du, and L. Gardner, An interactive web-based dashboard to track COVID-19 360 in real time. The Lancet infectious diseases, 2020. 20(5): p. 533-534. 361 4. Chen, H., et al., Clinical characteristics and intrauterine vertical transmission potential of 362 COVID-19 infection in nine pregnant women: a retrospective review of medical records. 363 The Lancet, 2020. 395(10226): p. 809-815. 364 5. Chen, N., et al., Epidemiological and clinical characteristics of 99 cases of 2019 novel 365 coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 2020. 366 **395**(10223): p. 507-513. Guan, W.-j., et al., Clinical characteristics of coronavirus disease 2019 in China. New 367 6. 368 England Journal of Medicine, 2020. 369 Wang, D., et al., Clinical characteristics of 138 hospitalized patients with 2019 novel 7. 370 coronavirus-infected pneumonia in Wuhan, China. Jama, 2020. 323(11): p. 1061-1069. 371 8. Xu, X.-W., et al., Clinical findings in a group of patients infected with the 2019 novel 372 coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. bmj, 2020. 373 368. 374 9. Pan, A., et al., Association of public health interventions with the epidemiology of the 375 COVID-19 outbreak in Wuhan, China. JAMA, 2020. Li, Q., et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected 376 10. 377 pneumonia. New England Journal of Medicine, 2020. 378 11. Williamson, E.J., et al., Factors associated with COVID-19-related death using 379 OpenSAFELY. Nature, 2020. 584(7821): p. 430-436. 380 Lu, R., et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: 12. 381 implications for virus origins and receptor binding. The Lancet, 2020. 395(10224): p. 565-382 574. 383 13. Ellinghaus, D., et al., Genomewide association study of severe Covid-19 with respiratory 384 *failure.* New England Journal of Medicine, 2020. 385 14. Initiative, T.H.G., The COVID-19 Host Genetics Initiative, a global initiative to elucidate 386 the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus 387 pandemic. European Journal of Human Genetics, 2020: p. 1. 388 15. Docherty, A.B., et al., Features of 20 133 UK patients in hospital with covid-19 using the 389 ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. 390 bmj, 2020. 369. 391 Stoian, A.P., et al., Gender differences in the battle against COVID - 19: impact of 16. 392 genetics, comorbidities, inflammation and lifestyle on differences in outcomes. 393 International journal of clinical practice, 2020: p. e13666. 394 Sharma, G., A.S. Volgman, and E.D. Michos, Sex differences in mortality from COVID-19 17. 395 pandemic: are men vulnerable and women protected? JACC: Case Reports, 2020. 2(9): p. 396 1407-1410. 397 18. Jin, J.-M., et al., Gender differences in patients with COVID-19: Focus on severity and 398 mortality. Frontiers in Public Health, 2020. 8: p. 152.

399 400	19.	Pareek, M., et al., <i>Ethnicity and COVID-19: an urgent public health research priority</i> . The Lancet 2020 395 (10234): p. 1421-1422
400	20	Aldridge B W et al Black Asian and Minority Ethnic arouns in England are at
402	20.	increased risk of death from COVID-19: indirect standardisation of NHS mortality data
402		Wellcome Open Research 2020 5(88): n 88
403	21	Sudlow C et al. UK higher the open access resource for identifying the causes of a
404	21.	wide range of complex diseases of middle and old age. DioS medicine, 2015, 12 (3)
405	ว ว	Armstrong L at al. Dungmic linkage of COVID 10 test results between public bealth
400	22.	england's second generation surveillance system and LIK Riobank [Google Scholar]
407		Microh Conomics, 2020
400	22	Song C and U. Zhang, TARI's Tree, bread Analysis of Bare Veriants Identifying Rick
409	23.	Song, C. and H. Zhang, TARV. Thee - based Analysis of Rule Variants Identifying Risk
410		modifying variants in CTNNA2 and CNTNAP2 for Alconol Addiction. Genetic
411	24	epidemiology, 2014. 38 (6): p. 552-559.
412	24.	Madsen, B.E. and S.R. Browning, A groupwise association test for rare mutations using a
413	25	weighted sum statistic. PLoS genetics, 2009. 5 (2).
414	25.	Hu, J., et al., Supervariants identification for breast cancer. Genetic Epidemiology, 2020.
415	26.	Scully, E.P., et al., Considering now biological sex impacts immune responses and COVID-
416		19 outcomes. Nature Reviews Immunology, 2020: p. 1-6.
417	27.	Takahashi, T., et al., Sex differences in immune responses that underlie COVID-19 disease
418	20	outcomes. Nature, 2020: p. 1-9.
419	28.	Nunnari, G., et al., Network perturbation analysis in human bronchial epithelial cells
420		following SARS-CoV2 infection. Experimental Cell Research, 2020: p. 112204.
421	29.	Li, X. and X. Ma, Acute respiratory failure in COVID-19: is it "typical" ARDS? Critical Care,
422		2020. 24 : p. 1-5.
423	30.	Miyai, T., et al., Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling
424		during early B-cell development. Proceedings of the National Academy of Sciences,
425		2014. 111 (32): p. 11780-11785.
426	31.	Hojyo, S., et al., Zinc transporter SLC39A10/ZIP10 controls humoral immunity by
427		modulating B-cell receptor signal strength. Proceedings of the National Academy of
428		Sciences, 2014. 111 (32): p. 11786-11791.
429	32.	Gao, H., et al., Metal transporter SIc39a10 regulates susceptibility to inflammatory
430		stimuli by controlling macrophage survival. Proceedings of the National Academy of
431		Sciences, 2017. 114 (49): p. 12940-12945.
432	33.	Pasek, R.C., et al., Mammalian Clusterin associated protein 1 is an evolutionarily
433		<i>conserved protein required for ciliogenesis.</i> Cilia, 2012. 1 (1): p. 20.
434	34.	Kuek, L.E. and R.J. Lee, First contact: The role of respiratory cilia in host-pathogen
435		interactions in the airways. American Journal of Physiology-Lung Cellular and Molecular
436		Physiology, 2020.
437	35.	Joskova, M., J. Mokry, and S. Franova, Respiratory cilia as a therapeutic target of
438		phosphodiesterase inhibitors. Frontiers in Pharmacology, 2020. 11 .
439	36.	Xu, H., et al., High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of
440		oral mucosa. International journal of oral science, 2020. 12(1): p. 1-5.
441	37.	Sungnak, W., et al., SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells
442		together with innate immune genes. Nature medicine, 2020. 26 (5): p. 681-687.
443	38.	Curran, C.S., D.R. Rivera, and J.B. Kopp, COVID-19 Usurps Host Regulatory Networks.
444		Frontiers in Pharmacology, 2020. 11 : p. 1278.
445	39.	Li, W., M. Li, and G. Ou, COVID - 19, cilia, and smell. The FEBS Journal, 2020.

446	40.	Brodehl, A., A. Gaertner-Rommel, and H. Milting, Molecular insights into
447		cardiomyopathies associated with desmin (DES) mutations. Biophysical reviews, 2018.
448		10 (4): p. 983-1006.
449	41.	Liu, X., et al., Disruption of striated preferentially expressed gene locus leads to dilated
450		cardiomyopathy in mice. Circulation, 2009. 119 (2): p. 261.
451	42.	Agrawal, P.B., et al., SPEG interacts with myotubularin, and its deficiency causes
452		centronuclear myopathy with dilated cardiomyopathy. The American Journal of Human
453		Genetics, 2014. 95 (2): p. 218-226.
454	43.	Arentz, M., et al., Characteristics and outcomes of 21 critically ill patients with COVID-19
455		<i>in Washington State</i> . Jama, 2020. 323 (16): p. 1612-1614.
456	44.	Guo, T., et al., Cardiovascular implications of fatal outcomes of patients with coronavirus
457		disease 2019 (COVID-19). JAMA cardiology, 2020.
458	45.	Zheng, YY., et al., COVID-19 and the cardiovascular system. Nature Reviews Cardiology,
459		2020. 17 (5): p. 259-260.
460	46.	Hönlinger, A., et al., Tom7 modulates the dynamics of the mitochondrial outer
461		membrane translocase and plays a pathway - related role in protein import. The EMBO
462		journal, 1996. 15 (9): p. 2125-2137.
463	47.	Saleh, J., et al., Mitochondria and Microbiota dysfunction in COVID-19 pathogenesis.
464		Mitochondrion, 2020.
465	48.	Smith, N.L., et al., Novel associations of multiple genetic loci with plasma levels of factor
466		VII, factor VIII, and von Willebrand factor: The CHARGE Consortium. Circulation, 2010.
467		121 (12): p. 1382.
468	49.	Antoni, G., et al., Combined analysis of three genome-wide association studies on vWF
469		and FVIII plasma levels. BMC medical genetics, 2011. 12(1): p. 102.
470	50.	Zhu, Q., et al., Syntaxin-binding protein STXBP5 inhibits endothelial exocytosis and
471		promotes platelet secretion. The Journal of clinical investigation, 2014. 124(10): p. 4503-
472		4516.
473	51.	Bikdeli, B., et al., COVID-19 and Thrombotic or Thromboembolic Disease: Implications for
474		Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review.
475		Journal of the American College of Cardiology, 2020. 75 (23): p. 2950-2973.
476	52.	Huang, J., et al., Long noncoding RNA STXBP5 - AS1 inhibits cell proliferation, migration,
477		and invasion via preventing the PI3K/AKT against STXBP5 expression in non $-$ small $-$ cell
478		lung carcinoma. Journal of cellular biochemistry, 2019. 120 (5): p. 7489-7498.
479	53.	Cen, D., et al., Long noncoding RNA STXBP5-AS1 inhibits cell proliferation, migration, and
480		invasion through inhibiting the PI3K/AKT signaling pathway in gastric cancer cells.
481		OncoTargets and therapy, 2019. 12 : p. 1929.
482	54.	Fagerberg, L., et al., Analysis of the human tissue-specific expression by genome-wide
483		integration of transcriptomics and antibody-based proteomics. Molecular & Cellular
484		Proteomics, 2014. 13 (2): p. 397-406.
485	55.	Nara, H., et al., WSB-1, a novel IL-21 receptor binding molecule, enhances the
486		maturation of IL-21 receptor. Cellular Immunology, 2011. 269(1): p. 54-59.

487

489 **Figures and Tables**

490	Figure 1: Survival curves of 8 identified super-variants in the complete dataset. The x-
491	axis represents days since testing, and the y-axis represents the survival probability.
492	
493	Figure 2: Survival curves stratified by the number of super-variants in the complete
494	dataset. The x-axis represents days since testing, and the y-axis represents the survival
495	probability.
496	
497	Figure 3: Manhattan plot of traditional single SNP association analysis based on samples
498	with white British ancestry only and controlled for gender and age. The red horizontal
499	line corresponds to the commonly adopted genome-wide significant level at 5x10-8, and
500	the blue horizontal line gives to the suggestive significant level at 1x10-5. Top SNPs
501	above the suggestive line in each chromosome are annotated.
502	
503	Table 1: Marginal effects of 8 super-variants in the complete dataset.
504	
505	Table 2: SNPs with high selection frequency and important gene mapping results in 8
506	super-variants.
507	
508	Table 3: Allelic distribution of contributing SNPs.

509

Table 1 Marginal effects of 8 super-variants in the complete dataset.							
Dominant	Gene	OR	95% CI of OR	p value	HR	95% CI of HR	p value
chr6_148	STXBP5/ST XBP5-AS1	2.909	[1.938, 4.365]	1.4x10 ⁻⁷	2.048	[1.435, 2.921]	7.7x10 ⁻⁵
chr8_99	CPQ	1.923	[1.419, 2.605]	1.6x10 ⁻⁵	1.502	[1.119, 2.015]	6.7x10 ⁻³
chr16_4	CLUAP1	2.725	[1.744, 4.259]	7.0x10 ⁻⁶	2.123	[1.433, 3.143]	1.7x10 ⁻⁴
chr17_26	WSB1	4.237	[2.472, 7.263]	8.4x10 ⁻⁸	2.956	[1.949, 4.482]	3.4x10 ⁻⁷
Recessive	Gene	OR	95% CI of OR	p value	HR	95% CI of HR	p value
ch2_197	DNAH7/SL C39A10	2.553	[1.801, 3.616]	7.3x10 ⁻⁸	1.625	[1.170, 2.257]	3.8x10 ⁻³
chr2_221	DES/SPEG	2.739	[1.893, 3.963]	4.9x10 ⁻⁸	2.614	[1.894, 3.609]	5.2x10 ⁻⁹
chr7_23	TOMM7	2.411	[1.774, 3.276]	9.5x10 ⁻⁹	1.943	[1.451, 2.603]	8.1x10 ⁻⁶
chr10_57	PCDH15	2.521	[1.736, 3.662]	7.1x10 ⁻⁷	1.813	[1.283, 2.561]	7.4x10 ⁻⁴

510

 $Table \ 2| \ \text{SNPs with high selection frequency and important gene mapping results in 8 supervariants.}$

				Minor	Major			
Super-variant	Chr	SNP name	position	allele	allele	MAF	OR	p-value
chr2_197	2	rs73060484	196364477	С	А	0.069	1.945	6.0x10 ⁻⁴
		rs77578623	196369073	т	С	0.070	1.939	6.2x10 ⁻⁴
		rs74417002	196384505	G	А	0.034	1.832	3.0x10 ⁻²
		rs73070529	196412097	А	С	0.048	2.249	3.6x10 ⁻⁴
		rs113892140	196439005	А	G	0.044	2.031	2.8x10 ⁻³
		rs200008298	196602155	AATACT	А	0.032	1.8	3.1x10 ⁻²
		rs183712207	196611282	А	G	0.007	4.783	7.7x10 ⁻³
		rs191631470	196859045	Т	С	0.007	3.335	3.9x10 ⁻²
		rs2176724	196952410	А	G	0.138	1.484	6.1x10 ⁻³
chr2_221	2	rs71040457	220294782	А	AG	0.355	1.331	7.7x10 ⁻³
chr6_148	6	rs117928001	147514999	Т	С	0.049	2.749	1.1x10 ⁻⁵
		rs116898161	147538692	G	А	0.046	2.541	6.9x10 ⁻⁵
chr7_23	7	rs13227460	22588381	Т	С	0.278	1.3	2.6x10 ⁻²
		rs55986907	22817292	т	С	0.286	1.601	3.5x10⁻⁵
chr8_99	8	rs7817272	98140470	С	Т	0.194	1.736	1.7x10 ⁻⁵
		rs4735444	98140991	Т	С	0.201	1.784	5.8x10 ⁻⁶

		rs1431889	98141643	С	G	0.193	1.704	3.5x10 ⁻⁵
		rs2874140	98142930	Т	А	0.194	1.694	4.0x10 ⁻⁵
		rs531453964	98143128	CA	С	0.185	1.849	3.2x10 ⁻⁶
		rs7007951	98146644	т	С	0.184	1.711	4.4x10 ⁻⁵
		rs920576	98147539	С	т	0.201	1.615	1.6x10 ⁻⁴
chr10_57	10	rs9804218	56495374	G	С	0.357	1.373	3.3x10 ⁻³
chr16_4	16	rs2301762	3550977	G	С	0.055	2.541	2.0x10 ⁻⁵
chr17_26	17	rs60811869	25590833	С	т	0.024	2.966	6.5x10 ⁻⁴
		rs117217714	25987181	С	Т	0.013	6.255	3.3x10 ⁻⁵

Table 3 Allelic distribution of contributing SNPs.						
rs4346407	0	1	2			
Female	218	227	45			
Male	236	255	80			
10:56525802_CT_C	0	1	2			
Female	76	21	9			
Male	101	68	13			

Figure 1: Survival curves of 8 identified super-variants in the complete dataset. The x-axis represents days since testing, and the y-axis represents the survival probability.

Figure 2: Survival curves stratified by the number of super-variants in the complete
dataset. The x-axis represents days since testing, and the y-axis represents the survival
probability.

Figure 3: Manhattan plot of traditional single SNP association analysis based on samples with white British ancestry only and controlled for gender and age. The red horizontal line corresponds to the commonly adopted genome-wide significant level at 5×10^{-8} , and the blue horizontal line gives to the suggestive significant level at 1×10^{-5} . Top SNPs above the suggestive line in each chromosome are annotated.